Modern washers


Over time manufacturers of automatic washers have gone to great lengths to reduce cost. For instance, expensive gearboxes are no longer required, since motor speed can be controlled electronically. Some models can be controlled via WiFi.
Even on some expensive washers, the outer drum of front loading machines is often made of plastic. This makes changing the main bearings difficult, as the plastic drum usually cannot be separated into two halves to enable the inner drum to be removed to gain access to the bearing.
Some manufacturers have taken steps to reduce vibration emanating from their washers, by means of reducing or controlling motor speeds, using hydraulic suspensions instead of spring suspensions, and having freely moving steel balls contained inside a ring mounted on both the front and back sides of the drum in order to counter the weight of the clothes and reduce vibration.
Some machines, since 1998 now use a direct drive motor, a low aspect ratio device, where the stator assembly is attached to the rear of the outer drum, whilst the co-axial rotor is mounted on the shaft of the inner drum. Direct drive eliminates the need for a pulley, belt and belt tensioner. It was invented by LG Electronics in 1998 and patents granted in the US in 2010. Since, other manufacturers have followed suit. Some washing machines with this type of motor come with 10 or even 20 year warranties, but only for the motor itself.
In the early 1990s, upmarket machines incorporated microcontrollers for the timing process. These proved reliable and cost-effective, so many cheaper machines now also incorporate microcontrollers rather than electromechanical timers. Since the 2010s, some machines have touch panel displays, full color or color displays, or touch sensitive control panels.
In 2003, Maytag introduced their top-loading Neptune washer. Instead of an agitator, the machine had two washplates, perpendicular to each other and at a 45 degree angle from the bottom of the tub. The machine would fill with only a small amount of water and the two washplates would tumble the load within it, mimicking the action of a front-loading washer in a vertical axis design.